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Abstract

Clusters of workstations are becoming popular
platforms for parallel computing, but performance
on these systems is more complex and harder to pre-
dict than on traditional parallel machines. Hence,
performance monitoring and analysis is important
for understanding application behavior and improv-
ing performance. We present a performance moni-
tor for HPVM, a high-performance cluster running
Windows NT. The novel features of our monitor
are: an integrated approach to performance infor-
mation, a (software) global clock to correlate perfor-
mance information across cluster nodes and lever-
age of Windows NT performance monitoring facil-
ities. We discuss the design issues for this tool,
and present results of using this tool to analyze the
performance of a cluster application.
Keywords: cluster performance monitoring

1 Introduction

Clusters of workstations or PCs are now an at-
tractive alternative to massively parallel pro-
cessors (MPPs) for parallel computing. They
have good price/performance characteristics,
and recent developments in high-speed inter-
connects help these clusters get aggregate per-
formance comparable to supercomputers at a
fraction of the price.

However, there are problems with treating
clusters as traditional parallel machines. As
systems get increasingly complex, the factors

that can affect application performance also
increase—OS task scheduling, network behav-
ior and software messaging layers can each in-
fluence application performance dramatically.
Since we are interested in parallel-processing
clusters where the main goal is high perfor-
mance, performance monitoring becomes an
essential tool for obtaining good application
performance. A systematic and integrated ap-
proach to performance monitoring is essential.
This is the problem we address.

We have designed and implemented a
performance monitor for an HPVM (High-
Performance Virtual Machine) cluster con-
sisting of 64 dual-processor Pentium nodes
running Windows NT and HPVM 1.9 soft-
ware, connected with high-speed interconnects.
HPVM supports standard messaging inter-
faces such as MPI implemented over Illinois
Fast Messages (FM) [1], a low-latency, high-
bandwidth messaging layer.

The main goal for the performance moni-
tor was to assist performance tuning of ap-
plications on the cluster. A secondary goal
was to evaluate the performance of the vari-
ous messaging layers and provide information
that could help tune the design.

The performance monitor usually runs in on-
line mode and allows the set of monitored pa-
rameters to be dynamically configured. Soft-
ware time synchronization provides a global



timebase to correlate information from the dif-
ferent cluster nodes. The performance monitor
also makes use of the support for performance
monitoring provided by Windows NT.

The unique features of our performance
monitor are the ability to monitor cluster ap-
plications online, a software global clock to cor-
relate performance information across the clus-
ter and good integration with the Windows NT
performance monitoring facilities. The abil-
ity to correlate system performance informa-
tion with information from the HPVM system
allows us to quickly detect sources of perfor-
mance problems which are not obvious from
looking at them separately.

The remainder of this paper is organized as
follows: Section 2 provides background on the
issues involved in performance monitoring and
the HPVM cluster. Section 3 describes the de-
sign and implementation of our performance
monitor. Section 4 presents the results of us-
ing the performance monitor. We then discuss
the results in the context of related work and
finally conclude.

2 Background

2.1 Performance Monitoring

System performance can be monitored at a va-
riety of levels. Different types of information
are available at different levels, and there is of-
ten a trade-off between the type and amount
of information obtained and the overhead im-
posed.

Performance monitoring in hardware often
imposes the lowest overhead, but information
available at this level is often too low-level
and hard to relate to application behavior.
Hardware modifications on each node for per-
formance monitoring may also be undesirable
while using commodity components.

Even in software, different levels provide dif-
ferent types of information. Aggregate infor-
mation about system resource utilization may
be available at lower levels, while monitoring at
the application level may provide information
that is easier to relate back to the program-
ming model for analysis.

A decentralized approach is essential for
scalability as clusters grow in size. A unified
view is important, so the challenge is to collect
and synchronize information from the various
nodes to present an overall picture.

2.2 HPVM

The work described in this paper was done in
the context of the HPVM [2] project. The goal
of the HPVM project is to create a software in-
frastructure to enable high-performance paral-
lel computing on PC clusters, leveraging com-
modity hardware and software.

The HPVM cluster at UCSD consists of 64
Pentium III nodes connected by Myrinet, Gi-
ganet and Fast Ethernet. The cluster nodes
run the Windows NT operating system, and
HPVM 1.9 software. Illinois Fast Messages [1]
provides a high-bandwidth low-latency user-
level messaging layer that can use Myrinet, Gi-
ganet or shared memory (for intra-node com-
munication), and HPVM supports standard
supercomputing APIs such as MPI [3], which
makes it easy for users to port their parallel ap-
plications to run on an HPVM cluster. Mon-
itoring application performance is even more
important in the case of such “legacy soft-
ware”, to evaluate whether the design decisions
made for different architectures and software
environment are still appropriate.

2.3 Windows NT

Windows NT provides a standard performance
API that enables applications and other sys-
tem components to provide performance infor-
mation about themselves. N'T also makes avail-
able a variety of “system” information, such as
processor utilization and paging behavior. All
such performance information can be queried
using a standard interface, both locally and
from other machines on the network.

All performance information is maintained
in the form of “performance objects” that con-
tain a set of “counters” that are updated by the
application or OS to contain the performance
information. NT also provides two interfaces
to query this performance information—the
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Registry interface and the Performance Data
Helper (PDH) interface—that can be used
to develop custom tools for collecting perfor-
mance information. The standard NT Perfor-
mance Monitor utility (perfmon) can collect all
this information and either display it graphi-
cally or log it to a file.

3 Design

In this section, we describe the interesting as-
pects of the design, implementation and user
interface of the HPVM performance monitor.

3.1 Design Objectives

The main design objective for the HPVM per-
formance monitor was to provide a uniform in-
terface for performance information from all
parts of the system that affect performance.
Good scalability and low overhead were obvi-
ously important aspects to consider.

To achieve these objectives, the system was
designed as shown in Figure 1. Each node is in-
strumented to capture a variety of performance
information. This information is maintained
locally in the form of NT performance objects.
A central “monitor” node queries cluster nodes
periodically to collect and process this infor-
mation. Per-node overhead is thus limited to

instrumentation, and to sending performance
data when requested. The Fast Ethernet net-
work is used to transfer this performance infor-
mation, to minimize impact on the application,
which uses the faster Myrinet or Giganet net-
works.

Another decision was to make the moni-
toring process as transparent to the user as
possible—i.e. no modification of the applica-
tion is required. Data is collected from fixed
instrumentation points in the operating system
and the HPVM system. The user need only
link his application with the instrumented ver-
sion of the FM and MPI libraries.

3.2 Integration with Windows NT

We decided to use the Windows NT perfor-
mance interface, because this easily gives us
access to system performance information and
because it allows us to leverage the available
NT tools for viewing performance informa-
tion. Designing the instrumentation therefore
reduces to deciding upon a set of “performance
objects” and creating a set of counters for each
object that convey all interesting information
in a meaningful way. Thus we have uniform
access to performance information about the
base operating system alongside additional in-
formation about HPVM software, that can all
be displayed with standard NT performance
monitoring tools. This enables easier correla-
tion of operating system behavior with that of
the HPVM system, which is often critical for
accurately diagnosing problems.

Performance objects are updated during the
application execution, so information is avail-
able in real-time. Being able to adaptively
modify the set of information being collected
based on current behavior is also useful, since
it allows the user to “zoom in” on potential
sources of problems when they appear.

3.3 HPVM Performance Objects

Figure 1 shows the software layers in an HPVM
system. Since NT already collects informa-
tion about the OS, we instrument the Fast
Messages and the MPI layers. FM provides
a high-performance data delivery service to



higher-level messaging layers like MPI, so the
FM performance object provides information
mainly about data transfer. Apart from ag-
gregate amounts of data sent and received by
each node, we also keep track of message size
distributions. Information at this level is use-
ful for detecting problems with the network,
or things like network contention. At the MPI
layer, we collect two kinds of information. We
use the MPI Profiling Interface to collect infor-
mation about the MPI library in an MPI per-
formance object. Another MPID performance
object maintains lower-level information about
the MPI implementation, such as message size
distributions and current lengths of various in-
ternal message queues, that can indicate prob-
lems with buffer management or application
communication patterns.

Each of these performance objects—FM,
MPI and MPID—can be monitored indepen-
dently of the other. One counter, the Debug-
Counter, is visible to the application program-
mer. The value of this counter has no specific
meaning, and can be used by the application
programmer to indicate occurrence of certain
events.

3.4 Data collection and reduction

Performance information on each node is
stored as a shared memory object, and can be
accessed remotely using the NT performance
API. The monitoring frequency is decided by
the monitor node. The volume of performance
data that needs to be transferred depends on
the number of counters and is a few hundred
bytes per counter. We use the Fast Ethernet
network, not normally used by parallel appli-
cations on HPVM, to collect performance in-
formation from cluster nodes onto a monitor
node.

3.5 Time Synchronization

A global timebase is essential to correlate in-
formation obtained from different nodes. How-
ever, clusters rarely have a globally synchro-
nized clock. Each node has a local clock, and
all performance information is accompanied by

a local timestamp. Since the local clocks are
not coordinated in any way, we use a variant of
Cristian’s algorithm [4] to synthesize a global
clock by calculating offsets of different node
clocks from the monitor clock.

3.6 Usage

The application has to be linked with in-
strumented versions of the FM and MPI li-
braries to enable monitoring. The user runs
our timestamps program over all nodes before
and after the application to collect timestamps
from all machines and estimate local clock off-
sets from the global (monitor) clock, and spec-
ifies the list of counters and optionally a list
of hosts and/or processes to monitor, and an
interval at which to collect information. While
the application is running, the monitor col-
lects the values of these counters from each of
the nodes. Counters can be selected individu-
ally, or grouped into sets that provide informa-
tion about higher-level categories, such as “FM
data transfer” or “MPI collective communica-
tion”.

4 Application Example

We have used the performance monitor to ob-
serve various applications running on our clus-
ter. We present the results of using the per-
formance monitor on cholesky, an MPI pro-
gram to perform Cholesky factorization. The
program heavily uses collective communication
(broadcasts and reductions), which is interest-
ing for performance analysis, because every op-
eration is limited by the slowest node. We il-
lustrate how the performance monitor can be
used to diagnose performance problems in the
network layer as well as those caused by prob-
lems in the host operating system. The ability
to view all system information together is es-
sential to diagnose all these.

The monitor itself could theoretically affect
the application performance in two ways: con-
tending with the application for CPU and for
the network. To measure monitoring overhead,
we ran the cholesky program with and with-
out instrumentation, and measured the total
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runtime. The overhead was negligible (between
0 and 5 seconds on runs of up to 800 seconds)—
less than the measurement error.

Figure 2 shows the speedup of the cholesky
program as the number of nodes increases from
1 to 12. While the total execution time de-
creases from 831 seconds to 102 seconds (Fig-
ure 2a), the fraction of time spent in collec-
tive communication (Figure 2b) increases from
near—zero for the singlenode case to around
20% of the runtime for the 12 node case. This
indicates that the collective communication
performance becomes more important as the
application scales up.

We now show an example illustrating us-
age of the performance monitor. When a user
notices a communication-intensive application
running poorly, he could start by looking at the
network performance. If that seems normal,
then it is time to look at the “host” informa-
tion. One “slow” node could suggest problems
like stray competing processes, which might
need to be killed or moved. The ability to look
at the entire system and correlate the bad per-
formance with the causes is valuable.

Figure 3 shows an 8-node cholesky pro-
cess on the cluster, and the amount of time
spent in the collective communication phase by
each node. The NT “Process Elapsed Time”
counter measures how long the application has
been running, while the MPI “TimelnColl”
counter measures the time spent in the collec-
tive communication routines. The time spent
in collective communication varies from around
10% of the total runtime for some nodes (= 11
seconds out of a total runtime of 109 seconds)
to a high of close to 20% of the total runtime
(=~ 19 seconds out of 109). Thus some nodes
spend a significantly larger fraction of the time
in the collective communication routines. Typ-
ically the node that spends the least amount of
time in the collective communication routines
is the slowest—but all nodes have to wait until
it is done.

We also monitored a variety of system coun-
ters to monitor what system resources the ap-
plication used. The Process object allowed us
to observe that cholesky had nearly exclusive
use of the CPU throughout its run, on all the
nodes it was running on. The memory behav-
ior was very uniform—the working set of the
program fit in memory and stayed there, as
shown by a low system page fault rate. This in-
formation is not shown here because the values
largely remain constant during the application
run, but it was useful as a baseline to compare
against when diagnosing bad performance.

Our first test was to see if we could identify
network bottlenecks. Since our cluster is multi-
user, we often have different applications run-
ning on different subsets of it. Since they some-
times share network switches, we decided to see
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how two such applications would affect each
other. So during the run of cholesky, we had
a different and very network-intensive applica-
tion running on a part of the cluster. (This
application was running on separate hosts from
the ones on which we ran cholesky, but shared
switches with some of them). The added
network contention significantly increased the
run-time of cholesky, from 109 seconds to
150 seconds. Looking at the system counters
for processor utilization and memory behavior
shows that there is no contention on the host—
no increase in the number of context switches
or page faults, and no decrease in the appli-
cation’s share of CPU—so we conclude that
the problem is at the network. This is con-
firmed by looking at the data transferred at
the FM layer. Figure 4 shows the time history
of FM data transfer in each of the two runs—
data transfer in the second run (with network
contention) is much slower. Without having
access to host information, it would be harder
to eliminate operating system problems (like
scheduling or paging problems) as a source of
slowdown.

Our next example shows a case where the
problem was indeed at the host level, and un-
related to HPVM. We started a competing pro-
cess on one of the nodes during the run of
cholesky. The cholesky program was slowed
down and took around 250 seconds to com-
plete (as compared to the 109 seconds with-
out any host or network contention). Looking
at processor utilization showed that one node
received only around 60% of the CPU, as op-
posed to nearly 100% that the other nodes get,

thus pointing to CPU contention as the prob-
lem.

This example shows how the ability to cor-
relate OS and messaging layer is useful in pin-
pointing the source of performance problems.

5 Related Work

Performance monitoring is always an impor-
tant tool for obtaining maximum performance;
various approaches have been taken to achieve
this.

The SHRIMP Performance Monitor [5] is
closest to our work; it also aims to monitor
performance of applications on a cluster. How-
ever, it approaches the problem at a lower
level, with two solutions—a hardware monitor,
and instrumentation of the Myrinet firmware
to collect information about communication la-
tencies. The SHRIMP project has also imple-
mented an adaptive clock synchronization al-
gorithm [5]. We did consider instrumenting the
Myrinet interface, but concluded that it would
provide no further information unless we had
even tighter clock synchronization than we cur-
rently do.

The Pablo [6] toolkit focuses on portable
performance data analysis and source code in-
strumentation and data capture. Our perfor-
mance monitor trades off portability for the
ability to obtain lower-level information about
our specific platform.

Paradyn [7] is a tool designed for long-
running parallel and distributed programs and
large systems. It works by dynamically in-
strumentating running parallel programs, and
automates the search for performance bottle-
necks with a model of performance bottlenecks
and their probable causes. The dynamic in-
strumentation allows it to control instrumenta-
tion overhead by stopping when the overhead
reaches a threshold. This would be an inter-
esting feature to add to our monitor.

The Digital Continuous Profiling Infrastruc-
ture [8] is a sampling-based profiling system
that works on unmodified executables and has
low overhead. It was designed to run contin-
uously on production systems. Similarly, one
of the goals for our performance monitor has



been to have the overhead low enough to run
it all the time.

6 Summary

This paper presented a low-overhead perfor-
mance monitor for an HPVM cluster. Our fo-
cus was a monitor that could scale to large clus-
ters and that can integrate performance infor-
mation from all parts of the system. A software
time synchronization scheme provides a global
timebase to correlate events on the different
cluster nodes. We presented the results of us-
ing the performance monitor to analyze the
cholesky application and demonstrated how
the tool can be used to diagnose problems at
different levels of the system.

Our performance monitor takes advantage
of the Windows NT support for performance
monitoring. This allows us to access all system
performance information in a uniform manner
and present it in a unified format. Another ad-
vantage of using the Windows N'T performance
data format is the ability to leverage available
tools for displaying this information. Perfor-
mance information about a cluster application
can either be viewed in real-time, as the appli-
cation executes, or logged for off-line analysis.

Our decision to use the NT Performance
API proved extremely useful; many of the
performance problems we found could be di-
agnosed from the “system” information, and
some of them would have been invisible from
just looking at the application and network.
Having uniform access to operating system and
application information allows us to clearly see
the interactions across the system levels.
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